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Abstract

We study a general class of bicriteria network design problems. A generic problem in this
class is as follows: Given an undirected graph and two minimization objectives (under different
cost functions), with a budget specified on the first, find a jsubgraph from a given subgraph-class
that minimizes the second objective subject to the budget on the first. We consider three different
criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we
present the first polynomial-time approximation algorithms for a large class of bicriteria network
design problems for the above mentioned criteria. The following general types of results are
presented.

First, we develop a framework for bicriteria problems and their approximations. Second,
when the two criteria are the same we present a “black box” parametric search technique. This
black box takes in as input an (approximation) algorithm for the unicriterion situation and gen-
erates an approximation algorithm for the bicriteria case with only a constant factor loss in the
performance guarantee. Third, when the two criteria are the diameter and the total edge costs we
use a cluster-based approach to devise a approximation algorithms — the solutions output violate
both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we
provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic
programming. We show how these pseudopolynomial-time algorithms can be converted to fully
polynomial-time approximation schemes using a scaling technique.
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1 Motivation

With the information superhighway fast becoming a reality, the problem of designing networks ca-
pable of accommodating multimedia (both audio and video) traffic in a multicast (simultaneous
transmission of data to multiple destinations) environment has come to assume paramount impor-
tance [Ch9l, FW+85, KJ83, KP+92A, KP+93]. As discussed in Kompella, Pasquale and Polyzos
[KP+92A], one of the popular solutions to multicast routing involves tree construction. Two opti-
mization criteria — (1) the minimum worst-case transmission delay and (2) the minimum total cost
— are typically sought to be minimized in the construction of these trees. Network design problems
where even one cost measure must be minimized, are bfierhard. (See Section A2 on Network
Design in [GJ79].) But, in real-life applications, it is often the case that the network to be built is
required to minimize multiple cost measures simultaneously, with different cost functions for each
measure. For example, as pointed out in [KP+92A], in the problem of finding good multicast trees,
each edge has associated with it two edge costs: the construction cost and the delay cost. The con-
struction cost is typically a measure of the amount of buffer space or channel bandwidth used and the
delay cost is a combination of the propagation, transmission and queuing delays.

Such multi-criteria network design problems, with separate cost functions for each optimization
criterion, also occur naturally in Information Retrieval [BK90] and VLSI designs (see [ZP+94] and
the references therein). With the advent of deep micron VLSI designs, the feature size has shrunk to
sizes of 0.5 microns and less. As a result, the interconnect resistance, being proportional to the square
of the scaling factor, has increased significantly. An increase in interconnect resistance has led to an
increase in interconnect delays thus making them a dominant factor in the timing analysis of VLSI
circuits. Therefore VLSI circuit designers aim at finding minimum cost (spanning or Steiner) trees
given delay bound constraints on source-sink connections.

The above applications set the stage for the formal definition of multicriteria network design prob-
lems. We explain this concept by giving a formal definition of a bicriteria network design problem.

A generic bicriteria network design problerd\ (B, S), is defined by identifying two minimization
objectives, -A andB, - from a set of possible objectives, and specifying a membership requirement
in a class of subgraphsS- The problem specifies a budget value on the first objeciveinder one

cost function, and seeks to find a network having minimum possible value for the second objective,
B, under another cost function, such that this network is within the budget on the first objective. The
solution network must belong to the subgraph-cBsg&or example, the problem of finding low-cost

and low-transmission-delay multimedia networks [KP+92A, KP+93] can be modeled as the (Diam-
eter, Total cost, Spanning tree)-bicriteria problem: given an undirected g¥aph(V, E') with two
weight functionsc, andd, for each edge € E modeling construction and delay costs respectively,
and a boun® (on the total delay), find a minimu@cost spanning tree such that the diameter of the
tree under thé-costs is at mosbD. It is easy to see that the notion of bicriteria optimization problems
can be easily extended to the more general multicriteria optimization problems. In this paper, we will
be mainly concerned with bicriteria network design problems.



In the past, the problem of minimizing two cost measures was often dealt with by attempting to
minimize some combination of the two, thus converting it into a unicriterion problem. This approach
fails when the two criteria are very disparate. We have chosen, instead, to model bicriteria problems
as that of minimizing one criterion subject to a budget on the other. We argue that this approach is
both general as well as robust. It is more general because it subsumes the case where one wishes to
minimize some functional combination of the two criteria. It is more robust because the quality of
approximation is independent of which of the two criteria we impose the budget on. We elaborate on
this more in Sections 5.1 and 5.2.

The organization of the rest of the paper is as follows: Section 3 summarizes the results obtained
in this paper; Section 2 discusses related research work; Section 4 contains the hardness results;
Section 5.1 shows that the two alternative ways of formulating a given bicriteria problem are indeed
equivalent; Section 5.2 demonstrates the generality of the bicriteria approach; Section 6 details the
parametric search technique; Section 7 presents the approximation algorithm for diameter constrained
Steiner trees; Section 8 contains the results on treewidth-bounded graphs; Section 9 contains some
concluding remarks and open problems.

2 Previous Work

2.1 General Graphs

The area of unicriterion optimization problems for network design is vast and well-explored (See
[Ho95, CK95] and the references therein.). Ravi et al. [RM+93] studied the degree-bounded mini-
mum cost spanning tree problem and provided an approximation algorithm with performance guar-
antee Q(logn), O(logn)).

The (Degree, Diameter, Spanning tree) problem was studied by Ravi [Ra94] in the context of
finding good broadcast networks. There he provides an approximation algorithm for the (Degree,
Diameter, Spanning tree) problem with performance guaraiéeg’ n), O(logn))®.

The (Diameter, Total cost, Spanning tree) entry in Table 1 corresponds to the diameter-constrained
minimum spanning tree problem introduced earlier. It is known that this problé§Pishard even
in the special case where the two cost functions are identical [HL+89]. Awerbuch, Baratz and Peleg
[AB+90] gave an approximation algorithm witl®)(1), O(1)) performance guarantee for this prob-
lem - i.e. the problem of finding a spanning tree that has simultaneously small diameter (i.e., shallow)
and small total cost (i.e., light), both under the same cost function. Khuller, Raghavachari and Young
[KR+93] studied an extension callddght, approximate Shortest-path Trees (LASRH gave an
approximation algorithm withO(1), O(1)) performance guarantee. Kadaba and Jaffe [KJ83], Kom-
pella et al. [KP+92A], and Zhu et al. [ZP+94] considered the (Diameter, Total cost, Steiner tree)
problem with two edge costs and presented heuristics without any guarantees. It is easy to con-

5The result in Ravi [Ra94] is actually somewhat stronger - given a budiyain the degree he finds a tree whose total
cost is at mosO(log n) times the optimal and whose degree is at n@&D log n + log? n).



struct examples to show that the solutions produced by these heuristics in [ZP+94, KP+92A], can
be arbitrarily bad with respect to an optimal solution. A closely related problem is that of finding
a diameter-constrained shortest path between two pre-specified verticel:, or (Diameter, To-

tal cost,s-t path). This problem, termed the multi-objective shortest path problem (MOSP) in the
literature, iSNP-complete and Warburton [Wa87] presented the first fully polynomial approxima-
tion scheme¥PAS) for it. Hassin [Ha92] provided a strongly polynomiBPA S for the problem

which improved the running time of Warburton [Wa87]. This result was further improved by Phillips
[Ph+93].

The (Total cost, Total cost, Spanning tree)-bicriteria problem has been recently studied by Ganley
et al. [GG+95]. They consider a more general problem with more than two weight functions. They
also gave approximation algorithms for the restricted case when each weight function obeys triangle
inequality. However, their algorithm does not have a bounded performance guarantee with respect to
each objective.

2.2 Treewidth-Bounded Graphs

Many NP-hard problems have exact solutions when attention is restricted to the class of treewidth-
bounded graphs and much work has been done in this area (see [AC+93, AL+91, BL+87] and the
references therein). Independently, Bern, Lawler and Wong [BL+87] introduced the notion of de-
composable graphs. Later, it was shown [AC+93] that the class of decomposable graphs and the
class of treewidth-bounded graphs are equivalent. Bicriteria network design problems restricted to
treewidth-bounded graphs have been previously studied in [AL+91, Bo88].

3 Our Contributions

In this paper, we study the complexity and approximability of a number of bicriteria network design
problems. The three objectives we consider are: (i) total cost, (ii) diameter and (iii) degree of the
network. These reflect the price of synthesizing the network, the maximum delay between two points
in the network and the reliability of the network, respectively. To&al costobjective is the sum of
the costs of all the edges in the subgraph. Diemeterobjective is the maximum distance between
any pair of nodes in the subgraph. Thegreeobjective denotes the maximum over all nodes in the
subgraph, of the degree of the node. The class of subgraphs we consider in this paper are mainly
Steiner treegand henceSpanning treeas a special case); although several of our results extend to
more general connected subgraphs such as generalized Steiner trees.

As mentioned in [GJ79], most of the problems considered in this papeNBréard for arbi-
trary instances even when we wish to find optimum solutions with respect to a single criterion. Given
the hardness of finding optimal solutions, we concentrate on devising approximation algorithms with
worst case performance guarantees. Recall that an approximation algorithm for a minimization prob-
lem IT provides aperformance guaranteeof p if for every instancel of II, the solution value



returned by the approximation algorithm is within a fagi@f the optimal value fod. Here, we ex-
tend this notion to apply to bicriteria optimization problems. @& 3)-approximation algorithm for

an (A, B, S)-bicriteria problem is defined as a polynomial-time algorithm that produces a solution
in which the first objective A) value, is at mosty times the budget, and the second objectiBg (
value, is at mosp times the minimum for any solution that is within the budgetdnThe solution
produced must belong to the subgraph-cl8iss\nalogous definitions can be given whdnand/or

B are maximization objectives.

3.1 General Graphs

Table 1 contains the performance guarantees of our approximation algorithms for finding spanning
trees,S, under different pairs of minimization objectived, andB. For each problem cataloged in

the table, two different costs are specified on the edges of the undirected graph: the first objective is
computed using the first cost function and the second objective, using the second cost function. The
rows are indexed by the budgeted objective. For example the entry ilArogolumnB, denotes

the performance guarantee for the problem of minimizing obje@iweith a budget on the objective

A. All the results in Table 1 extend to finding Steiner trees with at most a constant factor worsening
in the performance ratios. For the diagonal entries in the table the extension to Steiner trees follows
from Theorem 6.3. AGORITHM DCST of Section 7 in conjunction withIAGORITHM BICRITERIA-
EQuIVALENCE of Section 5.1 yields the (Diameter, Total cost, Steiner tree) and (Total cost, Diameter,
Steiner tree) entries. The other nondiagonal entries can also be extended to Steiner trees and these
extensions will appear in the journal versions of [RM+93, Ra94]. Our results for arbitrary graphs can
be divided into three general categories.

Cost Measureg Degree Diameter Total Cost
Degree (O(log n), O(log n))* (O(log® n), O(log n))[Ra94] | (O(logn), O(log n))[RM+93]
Diameter (O(logn), O(log” n))[Ra94] (I1+~,14+ %)* (O(log m), O(log n))*
Total Cost | (O(log n), O(log n))[RM+93] (O(logn), O(log n))* 14+~,1+ %)*

Table 1. Performance Guarantees for finding spanning trees in an arbitrary graph om nodes. Asterisks indicate
results obtained in this paper.y > 0 is a fixed accuracy parameter.

First, as mentioned before, there are two natural alternative ways of formulating general bicri-
teria problems: (i) where we impose the budget on the first objective and seek to minimize the
second and (ii) where we impose the budget on the second objective and seek to minimize the first.
We show that arfc, 3)-approximation algorithm for one of these formulations naturally leads to a
(8, a)-approximation algorithm for the other. Thus our definition of a bicriteria approximation is
independent of the choice of the criterion that is budgeted in the formulation. This makes it a robust
definition and allows us to fill in the entries for the problers A, S) by transforming the results
for the corresponding problemaA (B, S).

Second, the diagonal entries in the table follow as a corollary of a general result (Theorem 6.3)
which is proved using a parametric search algorithm. The entry for (Degree, Degree, Spanning tree)



follows by combining Theorem 6.3 with th@(log n)-approximation algorithm for the degree prob-

lem in [RM+93]. In [RM+93] they actually provide a@(logn)-approximation algorithm for the
weighted degree problem. The weighted degree of a subgraph is defined as the maximum over all
nodes of the sum of the costs of the edges incident on the node in the subgraph. Hence we actually get
an(O(logn), O(log n))-approximation algorithm for the (Weighted degree, Weighted degree, Span-
ning tree)-bicriteria problem. Similarly, the entry for (Diameter, Diameter, Spanning tree) follows

by combining Theorem 6.3 with the known exact algorithms for minimum diameter spanning trees
[CG82]; while the result for (Total cost, Total cost, Spanning tree) follows by combining Theorem
6.3 with an exact algorithm to compute a minimum spanning tree [CLR].

Finally, we present a cluster based approximation algorithm and a solution based decomposition
technique for devising approximation algorithms for problems when the two objectives are different.
Our techniques yieldO(log n), O(log n))-approximation algorithms for the (Diameter, Total cost,
Steiner tree) and the (Degree, Total cost, Steiner tree) prohlems

3.2 Treewidth-Bounded Graphs

We also study the bicriteria problems mentioned above for the class of treewidth-bounded graphs.
Examples of treewidth-bounded graphs include trees, series-parallel gkaphigrplanar graphs,
chordal graphs with cliques of size at mdstbounded-bandwidth graphs etc. We use a dynamic
programming technique to show that for the class of treewidth-bounded graphs, there are either
polynomial-time or pseudopolynomial-time algorithms (when the probleNPsomplete) for sev-

eral of the bicriteria network design problems studied herepofynomial time approximation
scheme(PTAS) for problemII is a family of algorithmsA such that, given an instandeof TI, for

all e > 0, there is a polynomial time algorithod € A that returns a solution which is within a factor

(1 + €) of the optimal value fod. A polynomial time approximation scheme in which the running
time grows as a polynomial function efis called afully polynomial time approximation scheme

Here we show how to convert these pseudopolynomial-time algorithms for problems restricted to
treewidth-bounded graphs into fully polynomial-time approximation schemes using a general scaling
technique. Stated in our notation, we obtain polynomial time approximation algorithms with perfor-
mance of(1, 1 +¢), for all e > 0. The results for treewidth-bounded graphs are summarized in Table
2. As before, the rows are indexed by the budgeted objective. All algorithmic results in Table 2 also
extend to Steiner trees in a straightforward way.

Our results for treewidth-bounded graphs have an interesting application in the context of find-
ing optimum broadcast schemes. Kortsarz and Peleg [KP92] Qéle n)-approximation algo-
rithms for the minimum broadcast time problem for series-parallel graphs. Combining our results for
the (Degree, Diameter, Spanning tree) for treewidth-bounded graphs with the techniques in [Ra94],
we obtain anO(ﬂ"—)—approximation algorithm for the minimum broadcast time problem for

loglogn
treewidth-bounded graphs (series-parallel graphs have a treewithimiproving and generalizing

"The result for (Degree, Total cost, Steiner tree) can also be obtained as a corollary of the results in [RM+93].



the result in [KP92]. Note that the best known result for this problem for general graphs is by Ravi
[Ra94] who provides an approximation algorithm performance guarattéeg? n), O(logn)).

Cost Measures Degree Diameter Total Cost
Degree
polynomial-time| polynomial-time | polynomial-time
Diameter (weakly NP-hard)| (weakly NP-hard)
polynomial-time (1,1+¢) (1,1+¢)
Total Cost (weakly NP-hard)| (weakly NP-hard)
polynomial-time (1,1+¢) (1,1+¢)

Table 2. Bicriteria spanning tree results for treewidth-bounded graphs.

4 Hardness results

The problem of finding a minimum degree spanning tree is strobgB+hard [GJ79]. This im-
plies that all spanning tree bicriteria problems, where one of the criteria is degree, are also strongly
NP-hard. In contrast, it is well known that the minimum diameter spanning tree problem and the
minimum cost spanning tree problems have polynomial time algorithms (see [CLR] and the refer-
ences therein).

The (Diameter, Total Cost, Spanning tree)-bicriteria problem is strodd®+hard even in the
case where both cost functions are identical [HL+89]. Here we give the details of the reduction to
show that (Diameter, Total Cost, Spanning tree) is we2kR-hard even for series-parallel graphs
(i.e. graphs with treewidth at mo&). Similar reductions can be given to show that (Diameter,
Diameter, Spanning tree) and (Total cost, Total cost, Spanning tree) are also \NRakhard for
series-parallel graphs.

We first recall the definition of theARTITION problem [GJ79]. As an instance of tRAR-

TITION problem we are given a sét = {t¢1,ts,---,t,} Of positive integers and the question is
whether there exists a SubsétC Asuchthat) " ¢ = > t;=()_ t;)/2.
tieX t;eT—-X t; €T

Theorem 4.1 (Diameter, Total cost, Spanning tree) is NP-hard for series-parallel graphs.

Proof: Reduction from thd?ARTITION problem. Given an instancé = {t;,ts,---,t,} of the
PARTITION problem, we construct a series parallel graphvith » + 1 vertices,vy,va, - v511
and2n edges. We attach a pair of parallel edgﬁsandef, betweerw; andv;11, 1 < i < n. We
now specify the two cost functionsandg on the edges of this grapbie}) = t;, c(e?) = 0,d(e}) =

0,d(e?) = t;,1 < i < n. Let Z t; = 2H. Now it is easy to show that’ has a spanning tree
t; €T
of d-diameter at mosH and totalc-cost at mostH if and only if there is a solution to the original

instanceT” of the PARTITION problem.



We now show that the (Diameter, Total-cost, Steiner tree) problem is hard to approximate within
a logarithmic factor. An approximation algorithm provided in Section 7. There is however a gap
between the results of Theorems 4.3 and 7.7. Our non-approximability result is obtained by an
approximation preserving reduction from th#N SET COVER . An instance(T', X') of the MIN
SET COVER problem consists of a univer§é = {t,ts, ..., } and a collection of subsef§ =
{X1,Xs,...,Xn}, X; C T, each setX; having an associated cast The problem is to find a
minimum cost collection of the subsets whose unidfi.is

Fact 4.2 Recently [AS97, RS97] have independently shown the following non-approximability
result:

It is N P-hard to find an approximate solution to the MIN SET COVER problem, with a uni-
verse of size k, with performance guarantee better than Q(Ink).

Corollary 4.3 There is an approximation preserving reduction from MIN SET COVER prob-
lem to the (Diameter, Total Cost, Steiner tree) problem. Thus:

Unless P = NP, given an instance of the (Diameter, Total Cost, Steiner tree) problem
with k sites, there is no polynomial-time approximation algorithm that outputs a Steiner
tree of diameter at most the bound D, and cost at most R times that of the minimum cost
diameter-D Steiner tree, for R < Ink.

Proof: We give an approximation preserving reduction fromMi&l SET COVER problem to the
(Diameter, Total Cost, Steiner tree) problem. Given an inst@ific&’) of the MIN SET COVER
problem wherel’ = {t1,ts,...,t;} and X = {X1, Xo,..., X}, X; C T, where the cost of
the setX; is ¢;, we construct an instandg of the (Diameter, Total Cost, Steiner tree) problem as
follows. The graphG has a node; for each element; of T8, a nodez; for each setX;, and an
extra “enforcer-nodeh. For each sek;, we attach an edge between nodesndz; of c-coste;, and
d-costl. For each elemert and setX; such that; € X; we attach an edgg;, ;) of c-cost, 0, and
d-cost,1. In addition to these edges, we add a pAtimade of two edges efcost, 0, andi-cost,1, to

the enforcer node (see Figure 1). The path is added to ensure that all the nodeare connected
to n using a path ofi-cost at most 2. All other edges in the graph are assigned infiitel d-costs.
The nodeg; along withn and the two nodes aP are specified to be the terminals for the Steiner
tree problem instance. We claim th@thas ac-cost Steiner tree of diameter at mdstnd cost if
and only if the original instanc€l’, X') has a solution of cost.

Note that any Steiner tree of diameter at mbshust contain a path frorty to n, for all 4, that
uses an edgér;,n) for someX; such that; € X;. Hence any Steiner tree of diameter at mbst
provides a feasible solution of equivalentost to the original Set cover instance. The proof now
follows from Theorem 4.2.

g

8There is a mild abuse of notation here but it should not lead to any confusion.




Figure 1: Figure illustrating the reduction from theN SET COVER problem to (Diameter, Total
cost, Steiner tree) problem. The instanc&dfll SET COVER is (T, X ) whereT' = {t1,to,...,t7},
X = {$1,$2,$3,$4}. Herex; = {tl,tg,tg}, To = {tg,t4,t5}, xr3 = {t5} andz, = {tG,t7}. The
cost on the edges shown in the figure denotes-tbest of the edges. All these edges haveost
=1.

5 Bicriteria Formulations: Properties

In Section 1, we claimed that our formulation for bicriteria problems is robust and general. In this
section, we justify these claims.

5.1 Equivalence of Bicriteria Formulations: Robustness

In this section, we show that our formulation for bicriteria problems is robust and general.

Let G be a graph with two (integral)cost functions¢ andd (typically edge costs or node costs).
Let A (B) be a minimization objective computed using cost functiqd). Let the budget bound on
the c-cost? (d-cost) of a solution subgraph be denotedZofD).

There are two natural ways to formulate a bicriteria problem:Xi)B, S) - find a subgraph i1$
whoseA -objective value (under thecost) is at mos€ and which has minimuriB-objective value
(under thed-cost), (i) B, A, S) - find a subgraph it$ whoseB-objective value (under thé-cost)
is at mostD and which has minimunA-objective value (under thecost).

Note that bicriteria problems are generally hard, when the two criterih@stie with respect
to each other - the minimization of one criterion conflicts with the minimization of the other. A

%In case of rational cost functions, our algorithms can be extended with a small additive loss in the performance guar-
antee.

e use the term “cost undet or “ ¢c-cost” in this section to mean the value of the objective function computed using
¢, and not to mean the total of all thecosts in the network.



good example of hostile objectives are the degree and the total edge cost of a spanning tree in an
unweighted graph [RM+93]. Two minimization criteria are formally defined to be hostile whenever
the minimum value of one objective is monotonically nondecreasing as the budget (bound) on the
value of the other objective is decreased.

Let A — APPROX(G,C) be any(«, 3)-approximation algorithm for4, B, S) on graphG
with budgetC under thec-cost. We now show that there is a transformation which produ¢gsca -
approximation algorithm forl§, A, S). The transformation uses binary search on the range of values
of the c-cost with an application of the given approximation algoritttn,— APPROX, at each
step of this search. Let the minimuercost of aD-bounded subgraph & be OPT,. LetC;; be an
upper bound on the-cost of anyD-bounded subgraph ®. Note thatCy; is at most some polynomial
in n times the maximune-cost (of an edge or a node). Henleg(Cy;) is at most a polynomial in
terms of the input specification. Léfeu. (Heuy) denote the-cost ¢-cost) of the subgraph output
by ALGORITHM BICRITERIA-EQUIVALENCE given below.

ALGORITHM BICRITERIA-EQUIVALENCE:

e Input: G - graph,D - budget on criterioB under thel-cost,A — APPROX - an(«, f3)-
approximation algorithm for4, B, S).

e 1. LetCy; be an upper bound on thecost of anyD-bounded subgraph .
2. Do binary search and find@ in [0, C,;] such that

(@) A — APPROX(G, (') returns a subgraph witrcost greater thagD, and
(b) A — APPROX(G,C' + 1) returns a subgraph witrcost at mostiD.
3. If the binary search in Step 2 fails to find a valiithen output “NO SOLUTION” else
outputA — APPROX(G,C' +1).

e Output: A subgraph fromS such that itsc-cost is at mosty times that of the minimumn
c-costD-bounded subgraph and ifscost is at mostD.

Claim 5.1 If G contains a D-bounded subgraph in S then ALGORITHM BICRITERIA-EQUIVALENCE
outputs a subgraph from S whose c-cost is at most « times that of the minimum c-cost D-
bounded subgraph and whose d-cost is at most D.

Proof: SinceA andB are hostile criteria it follows that the binary search in Step 2 is well defined.
Assume thas contains @é>-bounded subgraph. Then, sinhke— APPROX (G, Cp;) returns a sub-

graph withd-cost at mos3D, it is clear that AGORITHM BICRITERIA-EQUIVALENCE outputs a
subgraph in this case. As a consequence of Step 2a and the performance guarantee of the approxima-
tion algorithmA — APPROX, we get that’’ + 1 < OPT,. By Step 2b we have thdfeu,; < D

andHeu, < a(C' +1) < aOPT,. Thus ALGORITHM BICRITERIA-EQUIVALENCE outputs a sub-

graph fromS whosec-cost is at mostr times that of the minimune-costD-bounded subgraph and
whosed-cost is at mostD.

g



Note however that in general the resultifi§y «)-approximation algorithm is, natronglypoly-
nomial since it depends on the range of theosts. But it is gopolynomial-timealgorithm since its
running time is linearly dependent dog Cy,; the largesic-cost. The above discussion leads to the
following theorem.

Theorem 5.2 Any («, 3)-approximation algorithm for (A, B, S) can be transformed in poly-
nomial time into a (3, a)-approximation algorithm for (B, A, S).

5.2 Comparing with other functional combinations: Generality

Our formulation is more general because it subsumes the case where one wishes to minimize some
functional combination of the two criteria. We briefly comment on this next. For the purposes of
illustration letA andB be two objective functions and let us say that we wish to minimize the sum
of the two objectivesA andB. Call this an A + B, S) problem. LetA — APPROX(G,C) be

any («, #)-approximation algorithm forA, B, S) on graphG with budgetC under thec-cost. We
show thatve > 0, there is a polynomial tim¢l + €) max{«, B}-approximation algorithm for the

(A + B, S) problem. The transformation uses simple linear search in stefisiot) over the range

of values of thec-cost with an application of the given approximation algoritiin- APPROX,

at each step of this search. Let the optimum value for theH B, S) problem on a grapld: be
OPT.., = (V. + V), whereV, and V; denote respectively the contribution of the two caosts
andd for A andB. Let Heu.(C) (Heuy(C)) denote thec-cost (-cost) of the subgraph output

by A — APPROX(G,C). Finally, let Heu.4(C) denote the value computed byLBORITHM
CONVERT.

ALGORITHM CONVERT:

e Input: G - graph, arc > 0, A — APPROX - an(«, 3)-approximation algorithm for4,
B, S).
e 1. LetCy; be an upper bound on thecost of any subgraph i8.
2. LetR = [log(1¢) Chil
3. Forj =0to Rdo
(@) Mj = (1+¢€)

(b) Let Heu.(M;), Heuq(M;) denote thec-cost and thel-cost of solution obtained by
A — APPROX(G, M;).

4. Return the minimum over &l < j < R, of F; = Heu.(M;) + Heug(Mj;).

e Output: A subgraph fronS such that the sum of its-cost and its/-costs is at mostl +
e) max{c, B} OPT,q).

Theorem 5.3 Let A — APPROX(G,C) be any («, 5)-approximation algorithm for (A, B, S)
on graph G with budget C under the c-cost. Then, for all ¢ > 0, there is a polynomial time
(1 4+ ¢) max{a, 8}-approximation algorithm for the (A + B, S) problem.
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Proof Sketch: Consider the iteration of the binary search in which the bound on-tiest isR such

thatV, <R < (1 + €)V,. Notice that such a bound is considered as a result of discretization of the
interval [0, C;]. Then as a consequence of the performance guarantee of the approximation algorithm
A — APPROX, we get that

Heuc.(R) < aR < (1 +¢€)aV,.

By Step 4, the performance guarantee of the algorithm APPROX, and the hostility ofA and
B, we have that{euy(R) < V. ThusHeucq4(R) < (14+€)aV,.+pVy < (14+¢€) max{a, B} (Ve +
Vg). Since ALGORITHM CONVERT outputs a subgraph fro® the sum of whose-cost andd-cost
is minimized, we have that

. n[})ilg : (Heu.(C") + Heuy(C)) < (1 + €) max{c, BHOPT,+q).
e sLhi

A similar argument shows that dw, 3)-approximation algorithmA — APPROX(G,C), for
a (A, B, S) problem can be used to find devise a polynomial tifhe- €)%« approximation algo-
rithm for the (A x B, S) problem. A similar argument can also be given for other basic functional
combinations. We make two additional remarks.

1. Algorithms for solving (A, B), S) problems can not in general guarantee any bounded per-
formance ratios for solving theA(, B, S) problem. For example, a solution for the (Total Cost
+ Total Cost , Spanning Tree) problem or the (Total Cost/Total Cost , Spanning Tree) problem
can not be directly used to find a gogd, 3)-approximation algorithm for the (Total Cost,
Total Cost, Spanning Tree)-bicriteria problem.

2. The use of approximation algorithms fax (B, S)-bicriteria problems, to solvef(A, B), S)
problems ( denotes a function combination of the objectives) does not always yield the best
possible solutions. For example problems such as (Total Cost + Total Cost , Spanning Tree)
and (Total Cost/Total Cost, Spanning Tree) [Ch77, Me83] can be solved exactly in polynomial
time by direct methods but can only be solved approximately using any algorithm for the (Total
Cost, Total Cost , Spanning Tree)-bicriteria problEm.

6 Parametric Search

In this section, we present approximation algorithms for a broad class of bicriteria problems where
both the objectives in the problem are of the same type (e.g., both are total edge costs of some network
computed using two different costs on edges, or both are diameters of some network calculated using
two different costs etc.).

"This is true since the (Total Cost, Total Cost, Spanning Tree)-bicriteria problbif-omplete and therefore unless
P = NP cannot be solved in polynomial time.
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As before, letG be a graph with two (integral) cost functionsandd. LetC denote the budget
on criteriaA. We assume that theandd cost functions are of the same kind; i.e., they are both
costs on edges or, costs on nodes. UAfW (G, f) be anyp-approximation algorithm that on input
G produces a solution subgraph $nminimizing criterion A, under the single cost functiof. In
a mild abuse of notation, we also [BIVW (G, f) denote the f-)cost of the subgraph output by
UVW(G, f) when running on inpu& under cost functiorf. We use the following additional nota-
tion in the description of the algorithm and the proof of its performance guarantee. Given coastants
andb and two cost functiong andg, defined on edges (nodes) of a grapfi+ bg denotes the com-
posite function that assigns a cagt(e) + bg(e) to each edge (node) in the graph. Ibr{}ﬁ) denote
the cost of the subgraph, returnedByWw (G, (%)c—i— d) (under the((%)c + d)-cost function). Let
the minimumd-cost of aC-bounded subgraph i be OPT,. Let Heu. (Heuy) denote thes-cost
(d-cost) of the subgraph output byt AORITHM PARAMETRIC-SEARCH given below.

Let v > 0 be a fixed accuracy parameter. In what follows, we devigé€la+ ), (1 + %))—
approximation algorithm for4, A, S), under the two cost functionsandd. The algorithm consists
of performing a binary search with an application of the given approximation algorithiviiw, at
each step of this search.

ALGORITHM PARAMETRIC-SEARCH:

e Input: G - graph,C - budget on criteriaA under thec-cost, UVW - a p-approximation
algorithm that produces a solution subgraptSiminimizing criterion A, under a single
cost function;y - an accuracy parameter.

e 1. LetDy; be an upper bound on tlkcost of anyC-bounded subgraph .

2. Do binary search and find® in [0, yD;;] such that
(@) UVW(G, (2)c + d) returns a subgraph such tH4£ > (1 + 7)p, and
(b) UVW (G, (ZFL)c + d) returns a subgraph such tH%{g%ll)) < (14 7)p.

3. If the binary search in Step 2 fails to find a valiithen output “NO SOLUTION" else
outputUVW (G, (25 )c + d).

e Output: A subgraph frons such that itgl-cost is at mos([1+%)p times that of the minimun
d-costC-bounded subgraph and itscost is at mostl + ) pC.

Claim 6.1 The binary search, in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Proof: Since(LUVW(G, f)) isthe same s VW (G, £), we get thath(,@ =5 UVW(G, (%)c+

d) =UVW(G, (3)c+ %d). Hence%}) is a monotone nonincreasing functioniof Thus the bi-
nary search in Step 2 of &sORITHM PARAMETRIC-SEARCH is well-defined.

O

Claim 6.2 If G contains a C-bounded subgraph in S then ALGORITHM PARAMETRIC-SEARCH
outputs a subgraph from S whose d-cost is at most (1+ %)p times that of the minimum d-cost
C-bounded subgraph and whose c-cost is at most (1 + «)pC.
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Proof: By claim 6.1 we have that the binary search in Step 2 oGARITHM PARAMETRIC-
SEARCH is well-defined.

Assume thasS contains aC-bounded subgraph. Then, SinNEEVW (G, (V?i)c + d) returns
a subgraph with cost at moét + v)pDj,;, under the((%)c + d)-cost function, it is clear that
ALGORITHM PARAMETRIC-SEARCH outputs a subgraph in this case.

As a consequence of Step 2a and the performance guarantee of the approximation algorithm
UVW, we get that

p 1< 2P0
Y
By Step 2b we have that the subgraph output h\GARITHM PARAMETRIC-SEARCH has the fol-

lowing bounds on the-costs and thé-costs.

1
Heug < W(D'+1) <p(1+7)(D' +1) < (1+ ;)POPTd

) S (L )p(D 1) = (14 9)eC.

Thus ALGORITHM PARAMETRIC-SEARCH outputs a subgraph froi® whosed-cost is at most
(1+ %)p times that of the minimurd-costC-bounded subgraph and whaseost is at mostl +)oC.
g

Note however that the resultirgl +)p, (1+ %)p)—approximation algorithm for4, A, S) may
not bestrongly polynomial since it depends on the range of ¢heosts. But it is gpolynomial-time
algorithm since its running time is linearly dependentlenD;;. Note thatD;; is at most some
polynomial inn times the maximumi-cost (of an edge or a node). Henleg(Dy,;) is at most a
polynomial in terms of the input specification.

The above discussion leads to the following theorem.

Heu, < ( h(D' +1) < (

Theorem 6.3 Any p-approximation algorithm that produces a solution subgraph in S mini-
mizing criterion A can be transformed into a ((1+~)p, (1+ %)p)—approximation algorithm for
(A,A,S).

The above theorem can be generalized from the bicriteria case to the multicriteria case (with
appropriate worsening of the performance guarantees) where all the objectives are of the same type
but with different cost functions.

7 Diameter-Constrained Trees

In this section, we describel&soRITHM DCST, our(O(log n), O(log n))-approximation algorithm
for (Diameter, Total cost, Steiner tree) or the diameter-bounded minimum Steiner tree problem. Note
that (Diameter, Total cost, Steiner tree) includes (Diameter, Total cost, Spanning tree) as a special
case. We first state the problem formally: given an undirected gtaph (V, E), with two cost
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functionsc and d defined on the set of edges, diameter bodh@nd terminal setX C V, the
(Diameter, Total cost, Steiner tree) problem is to find a tree of minirawst connecting the set of
terminals inK with diameter at mosb under thel-cost.

The technique underlyingl&0RITHM DCST is very general and has wide applicability. Hence,
we first give a brief synopsis of it. The basic algorithm worksglig; ) phases (iterations). Initially
the solution consists of the empty set. During each phase of the algorithm we execute a subroutine
2 to choose a subgraph to add to the solution. The subgraph chosen in each iteration is required
to possess two desirable properties. First, it must not increase the budget value of the solution by
more thanD; second, the solution cost with respecBanust be no more tha@® PT,., whereO PT.,
denotes the minimum-cost of aD bounded subgraph i8. Since the number of iterations of the
algorithm isO(log n) we get a(log n, log n)-approximation algorithm. The basic technique is fairly
straightforward. The non-trivial part is to devise the right subrouflrte be executed in each phase.
2 must be chosen so as to be able to prove the required performance guarantee of the solution. We
use the solution based decomposition technique [Ra94, RM+93] in the analysis of our algorithm. The
basic idea (behind the solution based decomposition technique) is to use the existence of an optimal
solution to prove that the subroutitiefinds the desired subgraph in each phase.

We now present the specifics of BoORITHM DCST. The algorithm maintains a set of connected
subgraphs oclusterseach with its own distinguished vertex center Initially each terminal is in a
cluster by itself. In each phase, clusters are merged in pairs by adding paths between their centers.
Since the number of clusters comes down by a factd@ each phase, the algorithm terminates in
[log, | K|] phases with one cluster. It outputs a spanning tree of the final cluster as the solution.
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ALGORITHM DIAMETER-CONSTRAINED-STEINER-TREE (DCST):

e Input: G = (V, E) - graph with two edge cost functions,andd, D - a bound on the
diameter under thé-cost, K C V - set of terminals¢ - an accuracy parameter.

¢ 1. Initialize the set of clusterS, to contain| K| singleton sets, one for each terminalfn
For each cluster i@, define the single node in the cluster to be the center for the cluster.
Initialize the phase courit:= 1.

2. Repeat until there remains a single clustet;in

(a) Let the set of cluster§; = {C; ..., Cy,} at the beginning of thé'th phase (observe
thatk; = |K]).

(b) Construct a complete grapty; as follows: The node seV; of G; is {v
v is the center of a cluster ©i}. Let pathP,, be a(1 + ¢)-approximation to the mini
mum c-cost diameteiD-bounded path between centersandv, in G. Between every
pair of nodesv, andv, in V;, include an edg€v,,v,) in G; of weight equal to the
c-cost of P,

(c) Find a minimum-weight matching of largest cardinalityGin

(d) For each edge = (v.,v,) in the matching, merge cluste¢s, and C,;, for which v,
andv, were centers respectively, by adding path to form a new clusteC’;,. The
node (edge) set of the clustéy,, is defined to be the union of the node (edge) sets of
Cz,Cy and the nodes (edges) I,,. One ofv, andv, is (arbitrarily) chosen to be the
centerv,, of clusterC,, andCj, is added to the cluster s€t,  for the next phase.

() i:=i+1.

3. LetC’, with centerv’ be the single cluster left after Step 2. Output a shortest path tree of

C'’ rooted at’ using thed-cost.

e Output: A Steiner tree connecting the set of terminals Ah with diameter at most
2[log, n] D under thed-cost and of totak-cost at mos{(1 + ¢€)[log, n] times that of the|
minimum c-cost diameteiD-bounded Steiner tree.

We make a few points aboutt&sorITHM DCST:
1. The clusters formed in Step 2d need not be disjoint.

2. All steps, except Step 2b, in algorithm DCST can be easily seen to have running times indepen-
dent of the weights. We employ Hassin’s strongly polynorRiRIA S for Step 2b [Ha92]. Has-
sin’s approximation algorithm for thB-bounded minimuna-cost path runs in timé)(|E|(§ log 2)).
Thus ALGORITHM DCST is a strongly polynomial time algorithm.

3. Instead of finding an exact minimum cost matching in Step 2c, we could find an approximate
minimum cost matching [GW95]. This would reduce the running time of the algorithm at the
cost of introducing a factor &f to the performance guarantee.

We now state some observations that lead to a proof of the performance guarantesosf A
RITHM DCST. Assume, in what follows, that contains a diameteb-bounded Steiner tree. We
also refer to each iteration of Step 2 as a phase.
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Claim 7.1 Algorithm DCST terminates in [log, |K|] phases.

Proof: Let k; denote the number of clusters in phasélote thatk;,; = [%1 since we pair up the
clusters (using a matching in Step 2d). Hence we are left with one cluster after [pbgsg< || and
algorithm DCST terminates.
g

The next claim points out as clusters get merged, the nodes within each cluster are not too far away
(with respect tad-distance) from the center of the cluster. This intuitively holds for the following
important reasons. First, during each phase, the gmlas as its vertices, the centers of the clusters
in that iteration. As a result, we merge the clusters by joining their centers in Step 2d. Second, in
Step 2d, for each pair of clustefs andC, that are merged, we select one of their centeyr v,
as the center,,, for the merged clustet’,,. This allows us to inductively maintain two properties:
() the required distance of the nodes in a cluster to their centers in an itefage® and (ii) the
center of a cluster at any given iteration is a terminal node.

Claim 7.2 Let C € C; be any cluster in phase i of algorithm DCST. Let v be the center of C.
Then any node « in C' is reachable from v by a diameter-:D path in C' under the d-cost.

Proof: Note that the existence of a diameferbounded Steiner tree implies that all paths added in
Step 2d have diameter at mdstunderd-cost. The proof now follows in a straightforward fashion
by induction or.

g

Lemma 7.3 Algorithm DCST outputs a Steiner tree with diameter at most 2[log, |K|] - D
under the d-cost.

Proof: The proof follows from Claims 7.1 and 7.2.
g

This completes the proof of performance guarantee with respect tbdhst. We now proceed
to prove the performance guarantee with respect te-tbests. We first recall the following pairing
lemma.

Claim 7.4 [RM+93] Let T be an edge-weighted tree with an even number of marked nodes.
Then there is a pairing (v, w1), . .., (v, wg) of the marked nodes such that the v; — w; paths
in T' are edge-disjoint.

Claim 7.5 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPT,
denote its c-cost. The weight of the largest cardinality minimum-weight matching found in
Step 2d in each phase i of algorithm DCST is at most (1 + ¢) - OPT..
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Proof. Consider phaseof algorithm DCST. Note that since the centers at steaye a subset of the
nodes in the first iteration, the centessare terminal nodes. Thus they belong®T. Mark those
vertices inO PT that correspond to the matched vertices,vs, . . . ’UZL%J’ of G; in Step 2c. Then
by Claim 7.4 there exists a pairing of the marked vertices,(sayvs), . . ., (’UZL%J_I, ’UZL%J), and a
set of edge-disjoint paths in OPT between these pairs. Since these paths are edge-disjoint their total
c-cost is at mosO PT,. Further these paths have diameter at nivshder thel-cost. Hence the sum
of the weights of the edge®, v2), .. ., (U2Lk_2iJ71,U2Lk_2iJ) in G; , which forms a perfect matching
on the set of matched vertices, is at m@st- ¢) - OPT,. But in Step 2c of AGORITHM DCST,

a minimum weight perfect matching in the gra@t was found. Hence the weight of the matching
found in Step 2d in phaseof ALGORITHM DCST is at most1 + ¢) - OPT..

g

Lemma 7.6 Let O PT be any minimum c-cost diameter-D bounded Steiner tree and let O PT.
denote its c-cost. ALGORITHM DCST outputs a Steiner tree with total c-cost at most (1 +
€)[log, |K]] - OPT,.

Proof: From Claim 7.5 we have that thecost of the set of paths added in Step 2d of any phase is
at most(1 +¢€) - OPT,. By Claim 7.1 there are a total ¢fog, | K'|] phases and hence the Steiner tree
output by ALGORITHM DCST has totat-cost at most1 + €)[log, |K|] - OPT..
g

From Lemmas 7.3 and 7.6 we have the following theorem.

Theorem 7.7 There is a strongly polynomial-time algorithm that, given an undirected graph
G = (V, E), with two cost functions ¢ and d defined on the set of edges, diameter bound D,
terminal set K C V and a fixed € > 0, constructs a Steiner tree of G of diameter at most
2[logs | K|] D under the d-costs and of total c-cost at most (1 + €) [log, | K || times that of the
minimum-c-cost of any Steiner tree with diameter at most D under d.

8 Treewidth-Bounded Graphs

In this section we consider the class of treewidth-bounded graphs and give algorithms with improved
time bounds and performance guarantees for several bicriteria problems mentioned earlier. We do
this in two steps. First we develop pseudopolynomial-time algorithms based on dynamic program-
ming. We then present a general method for deriving fully polynomial-time approximation schemes
(FPAS) from the pseudopolynomial-time algorithms. We also demonstrate an application of the
above results to the minimum broadcast time problem.

A class of treewidth-bounded graphs can be specified using a finite number of primitive graphs
and a finite collection of binary composition rules. We use this characterization for proving our
results. A class of treewidth-bounded graphis inductively defined as follows [BL+87].
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1. The number of primitive graphs inis finite.

2. Each graph ii" has an ordered set of special nodes catedhinals. The number of terminals
in each graph is bounded by a constant, lsay

3. There is a finite collection of binary composition rules that operate only at terminals, either
by identifying two terminals or adding an edge between terminals. A composition rule also
determines the terminals of the resulting graph, which must be a subset of the terminals of the
two graphs being composed.

8.1 Exact Algorithms

Theorem 8.1 Every problem in Table 2 can be solved exactly in O((n - €)°())-time for any
class of treewidth bounded graphs with no more than k& terminals, for fixed £ and a budget
C on the first objective.

The above theorem states that there exist pseudopolynomial-time algorithms for all the bicriteria
problems from Table 2 when restricted to the class of treewidth-bounded graphs. The basic idea is to
employ a dynamic programming strategy. In fact, this dynamic programming strategy (in conjunction
with Theorem 5.2) yields polynomial-time (not just pseudopolynomial-time) algorithms whenever
one of the criteria is the degree. We illustrate this strategy by presenting in some detail the algorithm
for the diameter-bounded minimum cost spanning tree problem.

Theorem 8.2 For any class of treewidth-bounded graphs with no more than & terminals,
there is an O(n - k2+1. DOKY)time algorithm for solving the diameter D-bounded minimum
¢-Cost spanning tree problem.

Proof: Let d be the cost function on the edges for the first objective (diameter)atite cost
function for the second objective (total cost). lIebe any class of decomposable graphs. Let the
maximum number of terminals associated with any grépim I be k. Following [BL+87], it is
assumed that a given graghis accompanied by a parse tree specifying liévg constructed using
the rules and that the size of the parse tree is linear in the number of nodes.

Let 7 be a partition of the terminals ¢f. For every terminal letd; be anumberiq1,2,...,D}.
For every pair of terminalg and j in the same block of the partition let d;; be a number in
{L,2,...,D}. Corresponding to every partition, set{d;} and set{d;;} we associate a cost for
G defined as follows:

Cost]yy 14,3 = Minimum total cost under the function of any forest containing
a tree for each block af, such that the terminal nodes
occurring in each tree are exactly the members of the corresponding
block of 7, no pair of trees is connected, every vertexzin
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appears in exactly one treg,is an upper bound on the maximum
distance (under thé-function) froms to any vertex in the same
tree and?;; is an upper bound the distance (underdkenction)
between terminalsand; in their tree.

For the above defined cost, if there is no forest satisfying the required conditions the v@alue &
defined to bex.

Note that the number of cost values associated with any graphsiO (k¥ - DO**)). We now
show how the cost values can be computed in a bottom-up manner given the parse eeltor
begin with, sincd” is fixed, the number of primitive graphs is finite. For a primitive graph, each cost
value can be computed in constant time, since the number of forests to be examined is fixed. Now
consider computing the cost values for a grépbonstructed from subgraplis, andG-, where the
cost values for7; andG, have already been computed. Notice that any forest realizing a particular
cost value forG decomposes into two forests, one f@f and one forG, with some cost values.
Since we have maintained the best cost values for all possibilitiesf@ndG,, we can reconstruct
for each partition of the terminals @f the forest that has minimum cost value among all the forests
for this partition obeying the diameter constraints. We can do this in time independent of the sizes of
G, andG- because they interact only at the terminals to féfpand we have maintained all relevant
information.

Hence we can generate all possible cost valueé&/fby considering combinations of all relevant
pairs of cost values fo&; and Go. This takes timeO(k*) per combination for a total time of
O(k*+4 . DO As in [BL+87], we assume that the size of the given parse tre€fi O(n).

Thus the dynamic programming algorithm takes tifg: - k2++4 . DO, This completes the
proof.
g

8.2 Fully Polynomial-Time Approximation Schemes

The pseudopolynomial-time algorithms described in the previous section can be used to design fully
polynomial-time approximation schemdsFA S) for these same problems for the class of treewidth-
bounded graphs. We illustrate our ideas once again by devisiiiPas for the (Diameter, Total

cost, Spanning tree)-bicriteria problem for the class of treewidth-bounded graphs. The basic tech-
nigue underlying our algorithm, KGORITHM FPAS-DCST, is approximate binary search using
rounding and scaling - a method similar to that used by Hassin [Ha92] and Warburton [Wa87].

As in the previous subsection, lét be a treewidth-bounded graph with two (integral) edge-
cost functionsc andd. Let D be a bound on the diameter under theost. Lete be an accuracy
parameter. Without loss of generality we assume %h'atan integer. We also assume that there exists
a D-bounded spanning tree . Let OPT be any minimunmc-cost diametetD-bounded spanning
tree and letOPT, denote itsc-cost. LetTCSTonTW (G, ¢,d,C) be a pseudopolynomial time
algorithm for the (Total cost, Diameter, Spanning tree) problem on treewidth-bounded graphs; i.e.,
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TCSTonTW outputs a minimum diameter spanning tree-olvith total cost at most’ (under the
c-costs). Let the running time &CSTonTW bep(n, C) for some polynomiap. For carrying out
our approximate binary search we need a testing procedroe PDURETEST(V) which we detail
below:

PROCEDURETEST(A):

e Input: G - treewidth bounded graph) - bound on the diameter under tldecost, X -
testing parameteMCSTonTW - a pseudopolynomial time algorithm for the (Total cqgst,
Diameter, Spanning tree) problem on treewidth-bounded graplas) accuracy paramete

-

ol. Let Lmj denote the cost function obtained by setting the cost of edge

Lxere—y)-

2. If there exists & in [0, 2=1] such thatTCSTonTW (G, Lmj,d, C') produces 3
spanning tree with diameter at mdgtunder thel-cost then output LOW otherwise output
HIGH.

e Output: HIGH/LOW.

We now prove that ROCEDURETEST(A) has the properties we need to do a binary search.

Claim 8.3 If OPT, < X then PROCEDURETEST()) outputs LOW. And, if OPT, > A(1 + ¢)
then PROCEDURETEST(A) outputs HIGH.

Proof. If OPT,. < X then since

Ce Ce OPTC n—1
> LBgm0'S 2 3D Sxgmo1 S

eeOPT e€eOPT

€

therefore ROCEDURETEST(\) outputs LOW.
Let T, be thec-cost of any diameteP bounded spanning tree. Then we h&we> OPT,. If
OPT, > A(1 + ¢) then since

Ce Ce T.
2 5 2 200y V2 5w

ecT ecT

OPT. _(n_1)>n—1

_(n_l)z)\e/(n—l) €

therefore ROCEDURETEST(A) outputs HIGH.
g

Claim 8.4 The running time of PROCEDURETEST(]) is O(Zp(n, 2)).

7€

Proof: PROCEDURETEST()) invokesTCSTonTW only ”T*I times. And each time the budget
C'is bounded by’;—l, hence the running time of RO CEDURETEST(A) is O(2p(n, 2)).
g

We are ready to describelL&ORITHM FPAS-DCST - which usesA®CEDURETEST(A) to do
an approximate binary search.
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ALGORITHM FPAS-DCST:

e Input: G - treewidth-bounded graphD - bound on the diameter under th&cost,
TCSTonTW - a pseudopolynomial time algorithm for the (Total cost, Diameter, Span-
ning tree) problem on treewidth-bounded graghsan accuracy parameter.

e1l. Let(Cy; be an upper bound on thecost of anyD-bounded spanning tree. L&B = 0
andUB = Cy;.
2. WhileUB > 2L B do
(@) LetA = (LB+UB)/2.
(b) If PROCEDURETEST(A) returns HIGH then sek B = )\ else seUB = A(1 +¢).

3. RunTCSTonTW (G, Lmj,d, C) for all C in [0,2(21)] and among all the

trees with diameter at mo#? under thal-cost output the tree with the lowestost.

e Output: A spanning tree with diameter at mastunder thed-cost and withc-cost at most]
(1 + €) times that of the minimuna-cost D-bounded spanning tree.

Lemma 8.5 If G contains a D-bounded spanning tree then ALGORITHM FPAS-DCSToutputs
a spanning tree with diameter at most D under the d-cost and with c-cost at most (1 +
€)OPT..

Proof: It follows easily from Claim 8.3 that the loop in Step 2 oidORITHM FPAS-DCST
execute) (log Cy;) times before exiting witl.B < OPT. < UB < 2LB.
Since
Ce ce OPTC n — ]_
I < <2
Z LLBe/(n—l)J - Z LBe/(n—1) — LBe/(n—1) — ( € )

ecOPT ecOPT

we get that Step 3 of BGORITHM FPAS-DCST definitely outputs a spanning tree. Hetu be the
tree output. Then we have that

C C

Heu, = Z ce < LBe/(n—1) Z ——~ < LBe/(n —1)( Z | | +1).
ec Heu, ecHeu, LBG/(n o 1) ecHeu, LBG/(n o 1)

But since Step 3 of AGORITHM FPAS-DCST outputs the spanning tree with minimextost we

have that

C C
Y el < X el
e€CHeuc LBG/(n o 1) ecOPT LBG/(n - 1)
Therefore
Heu, < LBe/(n — 1) Z L%J +elLB < Z e + €OPT, < (1 + €)OPT,.
6 —_

ecOPT ecOPT

This proves the claim.
0

Lemma 8.6 The running time of ALGORITHM FPAS-DCSTis O(2p(n, %) log Ch;).
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Proof: From Claim 8.4 we see that Step 2 of @ORITHM FPAS-DCST takes tim@(Zp(n, 2) log Cp;)
while Step 3 takes timé&(2p(n, 2)). Hence the running time of KGORITHM FPAS-DCST is
O(%p(n, 2)log Ch;).
|

Lemmas 8.6 and 8.5 yield:

Theorem 8.7 For the class of treewidth-bounded graphs, there is an FPAS for the (Diame-
ter, Total cost, Spanning tree)-bicriteria problem with performance guarantee (1,1 + ¢).

As mentioned before, similar theorems hold for the other problems in Table 2 and all these results
extend directly to Steiner trees.

8.3 Near-Optimal Broadcast Schemes

The polynomial-time algorithm for the (Degree, Diameter, Spanning tree)-bicriteria problem for
treewidth-bounded graphs can be used in conjunction with the ideas presented in [Ra94] to obtain
near-optimal broadcast schemes for the class of treewidth-bounded graphs. As mentioned earlier,
these results generalize and improve the results of Kortsarz and Peleg [KP92].

Given an unweighted grapi and a root-, abroadcast schemis a method for communicating
a message from to all the nodes ofy. We consider a telephone model in which the messages are
transmitted synchronously and at each time step, any node can either transmit or receive a message
from at most one of its neighbors. Thenimum broadcast time probleisito compute a scheme that
completes in the minimum number of time steps. Qg7 (G) denote the minimum broadcast time
from rootr and letOPT (G) = M ax,cqOPT,(G) denote the minimum broadcast time for the graph
from any root. The problem of computin@PT;(G) - the minimum rooted broadcast time problem
- and that of computin@ PT(G) - theminimum broadcast time probleare bothNP-complete for
general graphs [GJ79]. It is easy to see that any approximation algorithm for the minimum rooted
broadcast time problem automatically yields an approximation algorithm for the minimum broadcast
time problem with the same performance guarantee. We refer the readers to [Ra94] for more details
on this problem. Combining our approximation algorithm for ( Diameter, Total cost, Spanning tree)-
bicriteria problem with performance guarantdel + ¢) for the class of treewidth bounded graphs
with the observations in [Ra94] yields the following theorem.

Theorem 8.8 For any class of treewidth-bounded graphs there is a polynomial-time O(ﬁog—n)—

approximation algorithm for the minimum rooted broadcast time problem and the minimum
broadcast time problem.

9 Concluding Remarks

We have obtained the first polynomial-time approximation algorithms for a large class of bicriteria
network design problems. The objective function we considered were (i) degree, (ii) diameter and
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(iii) total cost. The connectivity requirements considered were spanning trees, Steiner trees and (in
several cases) generalized Steiner trees. Our results were based on the following three ideas:

1. A binary search method to convert @n /3)-approximation algorithm forA, B, S)-bicriteria
problems to d3, a)-approximation algorithm forl, A, S)-bicriteria problems.

2. A parametric search technique to devise approximation algorithma fa,8)-bicriteria prob-
lems. We note that Theorem 6.3 is very general. Gargyp-approximation algorithm for min-
imizing the objectiveA in the subgraph-clas$, Theorem 6.3 allows us to producé2p, 2p)-
approximation algorithm for theA(, A, S)-bicriteria problem.

3. Acluster based approach for devising approximation algorithms for certain categoAe B¢ }-
bicriteria problems.

We also devised pseudopolynomial time algorithms and fully polynomial time approximation
schemes for a number of bicriteria network design problems for the class of treewidth-bounded
graphs.

Subsequent work

During the time when this paper was under review, important progress has been made in improving
some of the results in this paper. Recently, Ravi and Goemans [RG95] have deyisdd+ae)
approximation scheme for the (Total Cost, Total Cost, Spanning tree) problem. Their approach does
not seem to extend to devising approximation algorithms for more general subgraphs considered
here. In [KP97], Kortsarz and Peleg consider the (Diameter, Total Cost, Steiner tree) problem. They
provide polynomial time approximation algorithms for this problem with performance guarantees
(2,0(logn)) for constant diameter bount} and (2 + 2¢,n¢) for any fixed0 < e < 1 for general
diameter bounds. Improving the performance guarantees for one or more of the problems considered
here remains an interesting direction for future research.
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